

## AS and A level Further Mathematics Core Pure Mathematics

## Practice Paper

 Vectors

## Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.


## Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 101 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.


## Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. With respect to a fixed origin $O$, the lines $l_{1}$ and $l_{2}$ are given by the equations

$$
l_{1}: \mathbf{r}=\left(\begin{array}{r}
5 \\
-3 \\
p
\end{array}\right)+\lambda\left(\begin{array}{r}
0 \\
1 \\
-3
\end{array}\right), \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}
8 \\
5 \\
-2
\end{array}\right)+\mu\left(\begin{array}{r}
3 \\
4 \\
-5
\end{array}\right)
$$

where $\lambda$ and $\mu$ are scalar parameters and $p$ is a constant.
The lines $l_{1}$ and $l_{2}$ intersect at the point $A$.
(a) Find the coordinates of $A$.
(b) Find the value of the constant $p$.
(c) Find the acute angle between $l_{1}$ and $l_{2}$, giving your answer in degrees to 2 decimal places.

The point $B$ lies on $l_{2}$ where $\mu=1$.
(d) Find the shortest distance from the point $B$ to the line $l_{1}$, giving your answer to 3 significant figures.
2. Relative to a fixed origin $O$, the point $A$ has position vector $\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and the point $B$ has position vector $-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$. The points $A$ and $B$ lie on a straight line $l$.
(a) Find $\overrightarrow{A B}$.
(2)
(b) Find a vector equation of $l$.
(2)

The point $C$ has position vector $2 \mathbf{i}+p \mathbf{j}-4 \mathbf{k}$ with respect to $O$, where $p$ is a constant.
Given that $A C$ is perpendicular to $l$, find
(c) the value of $p$,
(4)
(d) the distance $A C$.
3. With respect to a fixed origin $O$, the lines $l_{1}$ and $l_{2}$ are given by the equations

$$
l_{1}: \mathbf{r}=\left(\begin{array}{r}
4 \\
28 \\
4
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
-5 \\
1
\end{array}\right), \quad l_{2}: \mathbf{r}=\left(\begin{array}{l}
5 \\
3 \\
1
\end{array}\right)+\mu\left(\begin{array}{r}
3 \\
0 \\
-4
\end{array}\right)
$$

where $\lambda$ and $\mu$ are scalar parameters.
The lines $l_{1}$ and $l_{2}$ intersect at the point $X$.
(a) Find the coordinates of the point $X$.
(b) Find the size of the acute angle between $l_{1}$ and $l_{2}$, giving your answer in degrees to 2 decimal places.

The point $A$ lies on $l_{1}$ and has position vector $\left(\begin{array}{r}2 \\ 18 \\ 6\end{array}\right)$
(c) Find the distance $A X$, giving your answer as a surd in its simplest form.

The point $Y$ lies on $l_{2}$. Given that the vector $\overrightarrow{Y A}$ is perpendicular to the line $l_{1}$
(d) find the distance $Y A$, giving your answer to one decimal place.

The point $B$ lies on $l_{1}$ where $|\overrightarrow{A X}|=2|\overrightarrow{A B}|$.
(e) Find the two possible position vectors of $B$.
4. With respect to a fixed origin $O$, the lines $l_{1}$ and $l_{2}$ are given by the equations

$$
l_{1}: \mathbf{r}=\left(\begin{array}{r}
6 \\
-3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
2 \\
3
\end{array}\right), \quad \quad l_{2}: \mathbf{r}=\left(\begin{array}{r}
-5 \\
15 \\
3
\end{array}\right)+\mu\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right),
$$

where $\mu$ and $\lambda$ are scalar parameters.
(a) Show that $l_{1}$ and $l_{2}$ meet and find the position vector of their point of intersection $A$.
(b) Find, to the nearest $0.1^{\circ}$, the acute angle between $l_{1}$ and $l_{2}$.

The point $B$ has position vector $\left(\begin{array}{r}5 \\ -1 \\ 1\end{array}\right)$.
(c) Show that $B$ lies on $l_{1}$.
(d) Find the shortest distance from $B$ to the line $l_{2}$, giving your answer to 3 significant figures.
5. With respect to a fixed origin $O$, the lines $l_{1}$ and $l_{2}$ are given by the equations

$$
\begin{aligned}
& l_{1}: \mathbf{r}=(9 \mathbf{i}+13 \mathbf{j}-3 \mathbf{k})+\lambda(\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}) \\
& l_{2}: \mathbf{r}=(2 \mathbf{i}-\mathbf{j}+\mathbf{k})+\mu(2 \mathbf{i}+\mathbf{j}+\mathbf{k})
\end{aligned}
$$

where $\lambda$ and $\mu$ are scalar parameters.
(a) Given that $l_{1}$ and $l_{2}$ meet, find the position vector of their point of intersection.
(b) Find the acute angle between $l_{1}$ and $l_{2}$, giving your answer in degrees to 1 decimal place.
(3)

Given that the point $A$ has position vector $4 \mathbf{i}+16 \mathbf{j}-3 \mathbf{k}$ and that the point $P$ lies on $l_{1}$ such that $A P$ is perpendicular to $l_{1}$,
(c) find the exact coordinates of $P$.
6. Relative to a fixed origin $O$, the point $A$ has position vector $(2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})$, the point $B$ has position vector $(5 \mathbf{i}+2 \mathbf{j}+10 \mathbf{k})$, and the point $D$ has position vector $(-\mathbf{i}+\mathbf{j}+4 \mathbf{k})$. The line $l$ passes through the points $A$ and $B$.
(a) Find the vector $\overrightarrow{A B}$.
(b) Find a vector equation for the line $l$.
(c) Show that the size of the angle $B A D$ is $109^{\circ}$, to the nearest degree.

The points $A, B$ and $D$, together with a point $C$, are the vertices of the parallelogram $A B C D$, where $\overrightarrow{A B}=\overrightarrow{D C}$.
(d) Find the position vector of $C$.
(e) Find the area of the parallelogram $A B C D$, giving your answer to 3 significant figures.
(f) Find the shortest distance from the point $D$ to the line $l$, giving your answer to 3 significant figures.
(Total 15 marks)
7. Relative to a fixed origin $O$, the point $A$ has position vector $\left(\begin{array}{r}-2 \\ 4 \\ 7\end{array}\right)$
and the point $B$ has position vector $\left(\begin{array}{r}-1 \\ 3 \\ 8\end{array}\right)$.
The line $l_{1}$ passes through the points $A$ and $B$.
(a) Find the vector $\overrightarrow{A B}$.
(b) Hence find a vector equation for the line $l_{1}$.

The point $P$ has position vector $\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$.
Given that angle $P B A$ is $\theta$,
(c) show that $\cos \theta=\frac{1}{3}$.

The line $l_{2}$ passes through the point $P$ and is parallel to the line $l_{1}$.
(d) Find a vector equation for the line $l_{2}$.

The points $C$ and $D$ both lie on the line $l_{2}$.
Given that $A B=P C=D P$ and the $x$ coordinate of $C$ is positive,
(e) find the coordinates of $C$ and the coordinates of $D$.
(3)
( $f$ ) find the exact area of the trapezium $A B C D$, giving your answer as a simplified surd.
8. With respect to a fixed origin $O$, the line $l$ has equation

$$
\mathbf{r}=\left(\begin{array}{c}
13 \\
8 \\
1
\end{array}\right)+\lambda\left(\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right), \text { where } \lambda \text { is a scalar parameter. }
$$

The point $A$ lies on $l$ and has coordinates $(3,-2,6)$.
The point $P$ has position vector $(-p \mathbf{i}+2 p \mathbf{k})$ relative to $O$, where $p$ is a constant.
Given that vector $\overrightarrow{P A}$ is perpendicular to $l$,
(a) find the value of $p$.

Given also that $B$ is a point on $l$ such that $\angle B P A=45^{\circ}$,
(b) find the coordinates of the two possible positions of $B$.

